МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МБОУ "Джалильская гимназия"

PACCMOTPEHO

Руководитель ШМО

Кульпанова И.Д.

Протокол №1 от «22» августа 2025 г.

СОГЛАСОВАНО

Заместитель директора по учебной работе

Миннахметова Р.Ф.

УТВЕРЖДЕНО

Директор МБОУ «Джалильская гимназия»

Булатова Г.Н.

Приказ №86 от «25» августа 2025г.

РАБОЧАЯ ПРОГРАММА

учебного курса по информатике

«Информатика в вопросах и ответах»

для обучающихся 9 класса

Пояснительная записка

1.1 **Актуальность.** Программа курса ориентирована на систематизацию знаний и умений по курсу информатики и информационно-коммуникационных технологий (ИКТ) для подготовки к основному государственному экзамену по информатике учащихся, освоивших основные общеобразовательные программы основного общего образования. Программа основана на учебнометодическом комплекте по информатике для основной школы (авторы Л.Л. Босова, А.Ю. Босова; издательство «БИНОМ.Лаборатория знаний»).

На сегодняшний день, одним из актуальных вопросов в обучении школьников является подготовка и сдача основных государственных экзаменов по завершению 9-го класса, а одной из составляющих успешности учителя является успех его учеников. В настоящий момент главным результатом учительского труда многие считают успешность выпускников на ОГЭ и на ЕГЭ.

Экзаменационная работа охватывает основное содержание курса информатики, важнейшие его темы, наиболее значимый в них материал, однозначно трактуемый в большинстве преподаваемых в школе вариантов курса информатики и входящие в федеральный компонент государственного образовательного стандарта основного общего образования.

1.2 **Идея курса** заключается в том, соединить воедино знания, полученные за 5 лет обучения в основной школе. Необходимо выделить существенные факторы, концентрировать внимание на них в процессе подготовки и сдачи экзаменов ОГЭ. Очевидным также является и то, что подготовку необходимо начинать заблаговременно, осуществлять её системно, индивидуально с каждым обучающимся, не исключая работу в группах, в парах и т.д.

Экзамен в рамках ОГЭ по информатике и ИКТ является необязательным, он входит в список экзаменов по выбору. Если обучающийся выбрал данный экзамен, то стоит детально изучить структуру и его особенности.

Для успешной подготовки к ОГЭ приходится использовать комбинацию допущенных и рекомендованных учебников и пособий в сочетании с теми, в которых та или иная тема изложена методически более грамотно и привлекательно. Только системная работа в течение учебного года позволяет повысить продуктивность и качество подготовки к ОГЭ.

Тексты тестов и задания можно составить из имеющихся на сегодняшний день в базе данных контрольно-измерительных материалов для проведения ОГЭ по информатике, из всевозможных демонстрационных, репетиционных и реальных вариантов ОГЭ, из сборников для подготовки к ОГЭ, допущенных Министерством образования и науки. Широкое использование систем тестового контроля не только позволяет подготовить учащихся к формату письменных экзаменов, проводимых в виде тестов, но является помощником на уроках информатики. Такие тесты могут носить не только контролирующие, но обучающие и закрепляющие функции, служить для осуществления как текущего или промежуточного, так и тематического или итогового контроля знаний.

Планирование рассчитано на аудиторные занятия в интенсивном режиме, при этом тренинговые занятия учащиеся проводят в режиме индивидуальных консультаций с преподавателем, и после каждого занятия предполагается самостоятельная отработка учащимися материалов по каждой теме курса в объеме временных рамок изучения темы. При необходимости возможны индивидуальные консультации с преподавателем в дистанционном режиме.

Цель курса:

Систематизация знаний и умений по курсу информатики и ИКТ и подготовка к основному государственному экзамену по информатике учащихся, освоивших основные общеобразовательные программы основного общего образования.

Задачи курса:

1) выработать стратегию подготовки к сдаче экзамена по информатике;

- 2) сформировать: представление о структуре и содержании контрольных измерительных материалов по предмету; назначении заданий различного типа (с выбором ответа, с кратким ответом, практическое задание);
- 3) сформировать умения эффективно распределять время на выполнение заданий различных типов;
- 4) развить интерес и положительную мотивацию изучения информатики.
- 1.3 **Сроки реализации программы**: программа данного факультатива реализуется в течение одного учебного года, рассчитана на 34 академических часа (один час в неделю).
- 1.4 **Возраст обучающихся.** Программа курса рассчитана на обучающихся 9 класса возраста 15-16 лет.
- 1.5 **Режим занятий:** занятия по внеурочной деятельности проводятся после окончания уроков. Между началом занятия и последним уроком предусмотрен перерыв продолжительностью 45 минут. Продолжительность занятия 40 минут. Занятия проводятся в учебном кабинете. Количество обучающихся в группе 12 человек. На каждого обучающегося предусмотрен персональный компьютер.

1.6 Формы проведения занятий.

Структура курса представляет собой набор логически законченных и содержательно взаимосвязанных тем, изучение которых обеспечивает системность и практическую направленность знаний и умений учащихся. Разнообразный дидактический материал дает возможность отбирать задания для учащихся различной степени подготовки. Занятия направлены на расширение и углубление базового курса. Содержание курса можно варьировать с учетом склонностей, интересов и уровня подготовленности учеников.

Основной тип занятий — практикум. Для наиболее успешного усвоения материала планируются индивидуальные формы работы и работа в малых группах, также, при самостоятельной работе возможны оперативные консультации учителя. Для текущего контроля учащимся предлагается набор

заданий, принцип решения которых разбирается совместно с учителем, а основная часть заданий выполняется учащимся самостоятельно.

Данный курс построен по принципу сочетания теоретического материала с практическим решением заданий в формате ОГЭ.

Обучение поданной программе сопровождается наличием у каждого обучаемого раздаточного материала с тестовыми заданиями в формате ОГЭ в бумажном и электронном виде.

Занятия проводятся в форме лекций и практических занятий по решению задач в формате ОГЭ. Перед разбором задач сначала предлагается краткая теория по определенной теме и важные комментарии о том, на что в первую очередь надо обратить внимание, предлагается наиболее эффективный способ решения. В качестве домашнего задания учащимся предлагается самостоятельное решение задач по мере освоения тем курса.

Промежуточный контроль знаний осуществляется в форме выполнения контрольных работ, тестов в бумажном варианте и через Интернет в системе Конструктора сайтов, например, «Сдам ГИА».

методами обучения Основными ПО программе курса являются практические методы выполнении заданий практикума. Практическая деятельность позволяет развить исследовательские и творческие способности учащихся, а также отработать основные умения. Роль учителя состоит в кратком по времени объяснении нового материала и постановке задачи, а затем консультировании учащихся в процессе выполнения практического задания.

Для реализации содержания обучения по данной программе все теоретические положения дополняются и закрепляются практическими заданиями, чтобы учащиеся на практике могли отработать навык выполнения действий по решению поставленной задачи.

Итак, для обучения учеников по данной программе применяются следующие методы обучения:

- демонстрационные (презентации, обучающие программные средства);
- словесные (лекции, семинары, консультации);

• практические (практические работы, направленные на организацию рабочего места, подбор необходимого оборудования; выбор программного обеспечения для выполнения своей работы).

1.7 Личностные, метапредметные и предметные результаты освоения курса.

Личностные результаты. Основными личностными результатами, формируемыми при изучении данного курса, являются:

- наличие представлений об информации как важнейшем стратегическом ресурсе развития личности, государства, общества;
- понимание роли информационных процессов в современном мире;
- владение первичными навыками анализа и критичной оценки получаемой информации;
- ответственное отношение к информации с учетом правовых и этических аспектов ее распространения;
- развитие чувства личной ответственности за качество окружающей информационной среды;
- способность увязать учебное содержание с собственным жизненным опытом, понять значимость подготовки в области информатики и ИКТ в условиях развития информационного общества;
- готовность к повышению своего образовательного уровня и продолжению обучения с использованием средств и методов информатики и ИКТ;
- способность и готовность к общению и сотрудничеству со сверстниками и взрослыми в процессе учебной деятельности;
- способность и готовность к принятию ценностей здорового образа жизни за счет знания основных гигиенических, эргономических и технических условий безопасной эксплуатации средств ИКТ.

Метапредметные результаты. Основными метапредметными результатами, формируемыми приданного курса, являются:

• владение общепредметными понятиями «модель», «алгоритм», «исполнитель» и др.;

- владение информационно-логическими умениями: определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, устанавливать причинно-следственные связи, строить логическое рассуждение, и делать выводы;
- владение умениями самостоятельно планировать пути достижения целей; соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий в рамках предложенных условий, корректировать свои действия в соответствии с изменяющейся ситуацией; оценивать правильность выполнения учебной задачи;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- владение основными универсальными умениями информационного характера: постановка и формулирование проблемы; поиск и выделение необходимой информации, применение методов информационного поиска; структурирование визуализация информации; выбор наиболее И эффективных способов решения задач в зависимости от конкретных условий; самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
- владение информационным моделированием как основным методом приобретения знаний: умение «читать» таблицы, диаграммы, схемы и т.д., самостоятельно перекодировать информацию из одной знаковой системы в другую; умение выбирать форму представления информации в зависимости от стоящей задачи, проверять адекватность модели объекту и цели моделирования;
- ИКТ-компетентность —широкий спектр умений и навыков использования средств информационных и коммуникационных технологий для сбора, хранения, преобразования и передачи различных видов информации, навыки создания личного информационного пространства (обращение с

устройствами ИКТ; коммуникация и социальное взаимодействие; поиск и организация хранения информации; анализ информации).

Предметные результаты включают в себя:

- формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами линейной, условной и циклической;
- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей таблицы, схемы, диаграммы;
- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

1.8Требования к уровню подготовки обучающихся:

В результате изучения данного элективного курса обучающиеся должны

• цели проведения ОГЭ;

знать:

- особенности проведения ОГЭ по информатике;
- структуру и содержание КИМов ОГЭ по информатике.

уметь:

• эффективно распределять время на выполнение заданий различных типов;

- оформлять решение заданий с выбором ответа и кратким ответом на бланках ответа в соответствии с инструкцией;
- оформлять решение практический заданий на компьютере в соответствии с требованиями инструкции по проверке;
- применять различные методы решения тестовых заданий различного типа по основным тематическим блокам по информатике.

Формы контроля.

В качестве объектов контроля используются:

- вопросно ответные упражнения;
- тестовые задания по темам курса (промежуточный контроль);
- компьютерный практикум;
- самоконтроль, взаимоконтроль;
- итоговый контрол

2.Учебно-тематический план

No			В том числе		
п/п	Перечень тем	Всего	Лекции	Практ.	
11/11		часов		занятия	
	Контрольно-				
1.	измерительные	1	1	_	
1.	материалы ОГЭ по	1		-	
	информатике				
2.	Тематические блоки:	33	12	20	
2.1	«Представление и	4	1	3	
	передача информации»	_		3	
2.2	«Обработка	2	1	1	
	информации»	2	1	1	
2.3	«Проектирование и	3	1	2	
	моделирование»		1	2	
2.4	«Основные устройства	2	1	1	
	ИКТ»	_	•	-	
2.5	«Создание и обработка				
	информационных	3	1	2	
	объектов»				
2.6	«Алгоритмизация и	11	4	7	
	программирование»				
2.7	«Математические				
	инструменты,	3	1	2	
	электронные таблицы»				
2.8	«Организация				
	информационной среды,	3	1	2	
	поиск информации.				
	Телекоммуникационные				

	технологии»»			
3.	Итоговый контроль	2	1	1
	Итого:	34	13	21

3. Содержание курса

Раздел 1. «Контрольно-измерительные материалы ОГЭ по информатике»

1.1.«Основные подходы к разработке контрольных измерительных материалов ОГЭ по информатике»

ОГЭ как форма независимой оценки уровня учебных достижений выпускников 9 класса. Особенности проведения ОГЭ по информатике. Специфика тестовой формы контроля. Виды тестовых заданий. Структура и содержание КИМов по информатике. Основные термины ОГЭ.

Раздел 2 «Тематические блоки»

2.1. Информационные процессы.

Передачи информации: естественные и формальные языки. Формализация описания реальных объектов и процессов, моделирование объектов и процессов. Дискретная форма представления числовой, текстовой, графической и звуковой информации. Единицы измерения количества информации. Процесс передачи информации, сигнал, скорость передачи информации. Кодирование и декодирование информации.

Теоретический материал по данной теме, разбор заданий из частей демонстрационных версий.

2.2. Обработка информации.

Алгоритм, свойства алгоритмов, способы записи алгоритмов. Блоксхемы. Алгоритмические конструкции. Логические значения, операции, выражения. Разбиение задачи на подзадачи, вспомогательный алгоритм. Основные компоненты компьютера и их функции. Программное обеспечение, его структура. Программное обеспечение общего назначения.

Теоретический материал по данной теме, разбор заданий из частей демонстрационных версий.

2.3. Проектирование и моделирование.

Чертежи. Двумерная графика. Графы. Использование стандартных графических объектов и конструирование графических объектов. Простейшие управляемые компьютерные модели.

Теоретический материал по данной теме, разбор заданий из частей демонстрационных версий.

2.4. Основные устройства ИКТ.

Соединение блоков и устройств компьютера, других средств ИКТ. Файлы и файловая система. Оценка количественных параметров информационных объектов. Объем памяти, необходимый для хранения объектов. Оценка количественных параметров информационных процессов. Скорость передачи и обработки объектов, стоимость информационных продуктов, услуг связи.

Теоретический материал по данной теме, разбор заданий из частей демонстрационных версий.

2.5. Создание и обработка информационных объектов.

Базы данных. Поиск данных в готовой базе. Создание записей в базе данных. Компьютерные и некомпьютерные каталоги; поисковые машины; формулирование запросов.

Повторение основных конструкций, разбор заданий из частей демонстрационных версий.

Теоретический материал по данной теме, разбор заданий из частей демонстрационных версий. Контрольный тест.

2.6. Алгоритмизация и программирование.

Основные понятия, связанные с использованием основных алгоритмических конструкций. Решение задач на исполнение и анализ отдельных алгоритмов, записанных в виде блок-схемы, на алгоритмическом языке или на языках программирования. Повторение методов решения задач на составление

алгоритмов для конкретного исполнителя (задание с кратким ответом) и анализ дерева игры.

Теоретический материал по данной теме, разбор заданий из частей демонстрационных версий. Контрольный тест.

2.7. Математические инструменты, электронные таблицы.

Таблица как средство моделирования. Математические формулы и вычисления по ним. Представление формульной зависимости в графическом виде.

Повторение основных конструкций, разбор заданий из частей демонстрационных версий.

2.8. Организация информационной среды, поиск информации. Телекоммуникационные технологии.

Электронная почта как средство связи. Сохранение информационных объектов из компьютерных сетей и ссылок на них для индивидуального использования (в том числе из Интернета). Организация информации в среде коллективного использования информационных ресурсов. Технология адресации и поиска информации в Интернете. Решение задач с использованием кругов Эйлера. Восстановление доменного IP-адреса.

3. Итоговый контроль.

Осуществляется через систему конструктор сайтов или тестов в которую заложены демонстрационные версии ОГЭ по информатике частей 1 и 2.

4. Календарно-тематическое планирование курса внеурочной деятельности «Информатика в вопросах и ответах»

№	Название темы	Кол-во	Дата
п/п		уроков	
1	Знакомство с контрольно-измерительными материалами	1	
	ОГЭ по информатике		
2	Количественные параметры информационных объектов	1	

3	Дискретная форма представления числовой и текстовой	1	
	информации		
4	Дискретная форма представления звуковой и	1	
	графической информации		
5	Кодирование и декодирование информации. Метод	1	
	графов в решение задач		
6	Формальные описания реальных объектов и процессов.	1	
	Задачи, представленные в виде таблиц и схем.		
7	Формальные описания реальных объектов и процессов.	1	
	Задачи, представленные в виде схем		
8	Анализирование информации, представленной в виде	1	
	схем. Решение с помощью метода графов		
9	Значение логического выражения. Операция «Логическое	1	
	умножение»		
10	Значение логического выражения. Операция «Логическое	1	
	сложение»		
11	База данных. СУБД	1	
12	Осуществление поиска в готовой базе данных по	1	
	сформулированному условию		
13	Файловая система организации данных	1	
14	Промежуточный контроль знаний	1	
15	Линейный алгоритм, записанный на алгоритмическом	1	
	языке		
16	Простой линейный алгоритм для формального	1	
	исполнителя		
17	Алгоритм, записанный на естественном языке,	1	
	обрабатывающий цепочки символов и чисел		
18	Алгоритм для исполнителя Чертежник с фиксированным	1	
	набором команд		
19	Алгоритм для исполнителя Черепаха и Муравей с	1	
	фиксированным набором команд		
20	Алгоритм в среде формального исполнителя «Робот» с	1	
	фиксированным набором команд		
21	Алгоритм в среде формального исполнителя «Робот» с	1	

	фиксированным набором команд		
22	Простейший циклический алгоритм, записанный на	1	
	алгоритмическом языке		
23	Циклический алгоритм обработки массива чисел,	1	
	записанный на алгоритмическом языке		
24	Алгоритм в среде формального исполнителя на языке	1	
	программирования. Команды языка программирования		
	Pascal		
25	Алгоритм в среде формального исполнителя на языке	1	
	программированияPascal		
26	Промежуточный контроль знаний	1	
27	Формульная зависимость в графическом виде	1	
28	Обработка большого массива данных с использованием	1	
	средств электронной таблицы		
29	Обработка большого массива данных с использованием	1	
	средств электронной таблицы		
30	Скорость передачи информации	1	
31	Информационно-коммуникационные технологии. URL-	1	
	адрес. Восстановление IP-адреса		
32	Осуществление поиска информации в Интернете. Круги	1	
	Эйлера		
33	Итоговый контроль	2	
	Итого;	34	

5. Материально-техническое обеспечение:

- 1) персональный компьютер учителя и обучающихся, проектор;
- 2) интернет-ресурсы, компьютерные презентации;
- 3) раздаточный материал (набор карточек, тестов, КИМы).

6. Список использованной литературы и цифровых ресурсов.

- 1. Информатика : учебник для 8 класса / Л.Л. Босова, А.Ю. Босова 2-е изд., испр. М. : БИНОМ. Лаборатория знаний, 2014. 160 с. : ил.
- 2. Информатика: учебник для 9 класса / Л.Л. Босова, А.Ю. Босова 2-е изд., испр. М.: БИНОМ. Лаборатория знаний, 2014. 184 с.: ил.
- 3. Информатика. Основы логики. 7-9 классы/ Е.Ю.Кузнецова, Н.Н.Самылкина. – М.: Бином. Лаборатория знаний,2014. – 184 с.
- 4. Информатика. Системы счисления и компьютерная арифметика.7-9 классы/ Е.Ю.Кузнецова, Н.Н.Самылкина. М.: Бином. Лаборатория знаний,2014. 104 с.
- 5. ОГЭ. Информатика и ИКТ: типовые экзаменационные варианты : 10 вариантов / С.С. Крылов, Т.Е. Чуркина М.: Издательство «Национальное образование», 2015, 144 с. (ОГЭ.ФИПИ школе).
- 6. ОГЭ. Информатика и ИКТ: типовые экзаменационные варианты : 10 вариантов / С.С. Крылов, Т.Е. Чуркина М.: Издательство «Национальное образование», 2016. 144 с. (ОГЭ.ФИПИ школе).
- 7. http://kpolyakov.spb.ru/ Преподавание, наука и жизнь.
- 8. inf.sdamgia.ru Сдам ГИА информатика.
- 9. www.fipi.ru Федеральный институт педагогических измерений.